ICE GENESIS Project Overview

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824310. This document and its contents remain the property of the beneficiaries of the ICE GENESIS Consortium and may not be distributed or reproduced without the express written approval of the ICE GENESIS Coordinator.

This text reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824310. This document and its contents remain the property of the beneficiaries of the ICE GENESIS Consortium and may not be distributed or reproduced without the express written approval of the ICE GENESIS Coordinator.

ICE GENESIS project overview

Creating the next generation of 3D simulation means for icing

Duration: From 1st January 2019 until 31st December 2022
 Coordinator: AIRBUS OPERATION SAS

Budget:

- Max EU Contribution: €11 964 300
- Total Estimated Project costs: €21 984 549
- Project effort in Person-months ~ 1858
- Advisory board: EASA, FAA, ADSE, AEROTEX, AIRBUS Defense&Space, CSTB, DAHER, EMBRAER, PIAGGIO, SAFRAN nacelles

ICE GENESIS project overview

Top level objective

The top level objective of the ICE GENESIS project is to provide the European aeronautical industry with a validated new generation of:

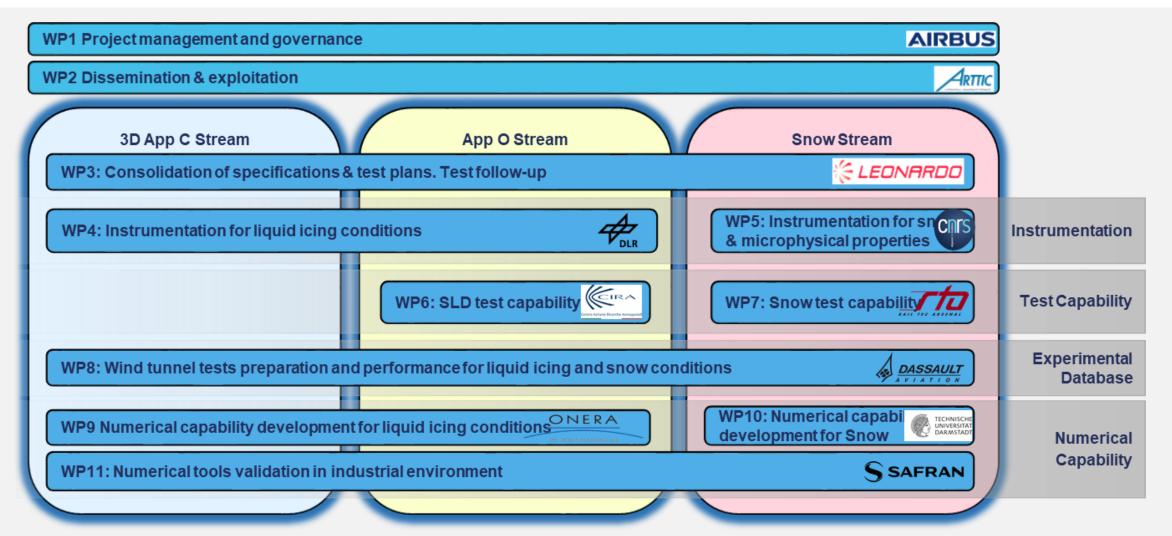
3D icing engineering tools (numerical simulation and Icing Wind Tunnels capabilities)

addressing

Regulation CS25 Appendix C (well-known icing environment)
Appendix O (SLD or Supercooled Large Droplet)
and snow conditions,

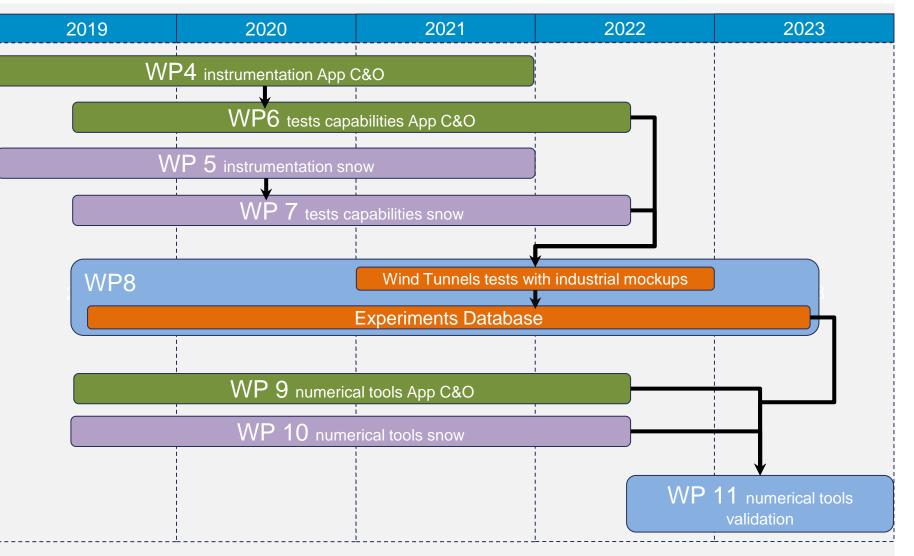
for safe, efficient and cost effective design and certification of future aircraft and rotorcraft.

Novelties in Europe : 3D ice scanning system


droplet temperature measurement snow characterization and campaigns

ICE GENESIS project overview

Sub-objectives Obj#1: Improve and validate existing 3D numerical tools to predict ice accretion in Appendix C, Appendix O and Snow conditions. **Obj#2:** Upgrade and calibrate **icing wind tunnels** to allow reproduction of: • Supercooled Large Droplets (SLD) in FZDZ (Freezing drizzle) conditions. Snow conditions • Additionally, to assess the potential of current icing wind tunnels to represent SLD in FZRA (Freezing rain) conditions. Obj#3: Build a large scale experimental database on representative 3D configurations to be used as a solid reference ("ground truth") for future numerical tools validation.


ICE GENESIS Organisation

WP DEPENDENCIES

- Perform wind tunnel tests in liquid icing and snow conditions, in industrial environment (IWT and mockups)
- Provide searchable database of experimental results for validation of numerical tools

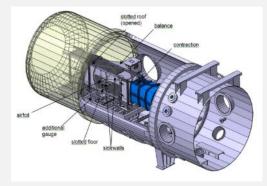

LIQUID CONDITIONS (APP C AND O) AND SNOW TESTS PREPARATION

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824310. This document and its contents remain the property of the beneficiaries of the ICE GENESIS Consortium and may not be distributed or reproduced without the express written approval of the ICE GENESIS Coordinator.

This text reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.

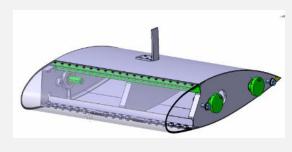
LIQUID CONDITIONS (APP C AND O) AND SNOW TESTS PREPARATION

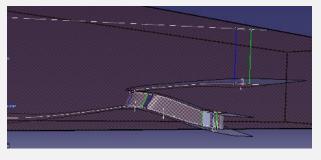
9


Tests in industrial environment : 4 Icing Wind Tunnels

Cranfield University

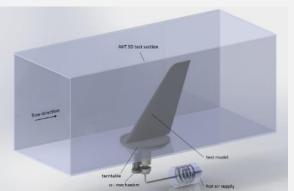
DGA / MINDEF

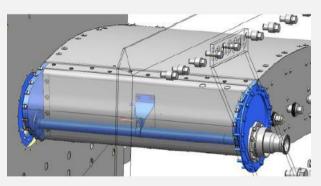

CIRA



Tests in industrial environment : 7 mockups (3 for snow)

SONACA, LIEBHERR


SAFRAN


DASSAV

AVI (+ splitter)

LDO

11 PU

Tests schedule

	MINDEF	Cranfield	Cira	TsAGI
2D Wing (Sonaca, Liebher) <i>April 2022</i>	APP O			
3D Wing (DA) April 2022			APP C/O	
Engine splitter (SAE) January 2022		APP C		
3D rescue hoist (LDO) November 2021				APP C/O
3D Wing (TsAGI) March 2021; December 2021				APP C/O + Snow
2D Nacelle (AVI) March 2021; December 2021				APP C/O +Snow
3D engine splitter (AVI) March 2021, December 2021				APP C/O + Snow

2D wing tests at MINDEF

Manufacturer		Icing WT		Conditions
SONACA + LIEBH	IR	MINDEF		APP O
	2D Wing			
Extruded NACElectrical prot				
Thermal cameIcing bladePressure belt				
			-	

Cruise, Holding, Landing With and without protection

Mach : 0.18, 0.36, 0.65 AOA : 0°, 4°, 6° Altiture : 5.000 – 20.000 ft

Freezing Drizzle LWC : 0.18 - 0.4 Air T° : -35°C - -2°C

13 PU

3D wing tests at CIRA

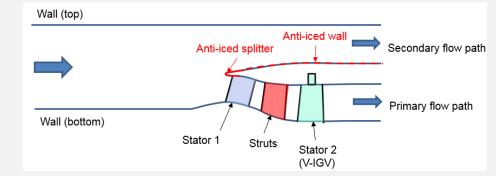
Manufacturer	Icing WT	Conditions
DASSAV	CIRA	APP C/O

3D Wing

- 1:1 scale business jet wing with flaps
- Bleed air anti-icing
- Thermo couples
- Pressure belts
- Pressure ports
- Icing blade

Holding & Landing With and without protection Different Flap and Slat configuration

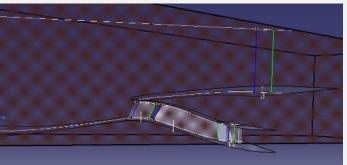
> Freezing Drizzle and APPC LWC : 0.18 - 0.43Air T° : -25°C - -2°C



3D engine splitter tests at CU

SAF-AE Cranfield University APP C	Manufacturer	Icing WT	Conditions
	SAF-AE	Cranfield University	APP C

3D Engine splitter


- Primary/secondary flux engine splitter
 - Tested only in APP C (large droplets are atomized through engine fan)
 - Electrical anti-icing protection
- Pressure taps, Pitot tubes
- Thermocouples, IR camera

Idle power With and without protection

Mach 1 : 0.22, 0.4 Mach 2 : 0.19 Altitude : Ground

APPC LWC : 0.5 – 1.2 Air T° : -20°C - -5°C

Rotor craft resuce hoist tests at TSAGI

Manufacture	r	Icing WT	Conditions
LDO		TsAGI	APP C/O
	Rotorcraft Rescue h	oist	19/1000000 7
No anti-ioCan only	rotorcraft rescue hois cing protection be tested during winte ed camera taps		
Mach : 0.2 AOA : -10 APPC and LWC : 0.1 Air T° : -20	° - 10° d APPO		

3D swept wing tests at TSAGI

Manufacturer	Icing WT	Conditions
TsAGI	TsAGI	APP C/O + Snow
3D Wing 3D swept wing Extruded NACA0012 section Bleed air anti-icing protection Can only be tested during winter 		
Only colder months for snowPressure taps		

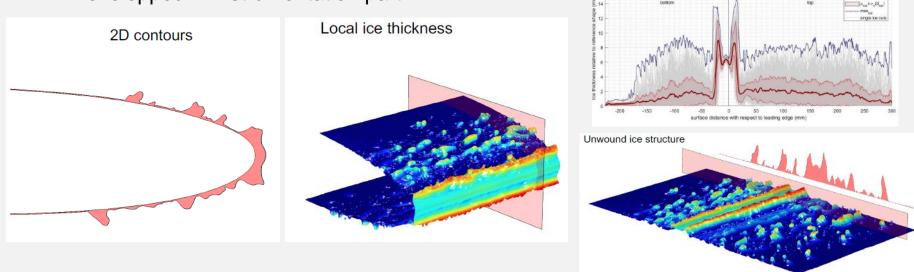
• Thermocouples

<u>Snow:</u> Air Speed : 50 – 100 m/s IWC : 1-3 Air T° : -15°C - 2°C

2D nacelle and 3D engines splitter tests at TSAGI

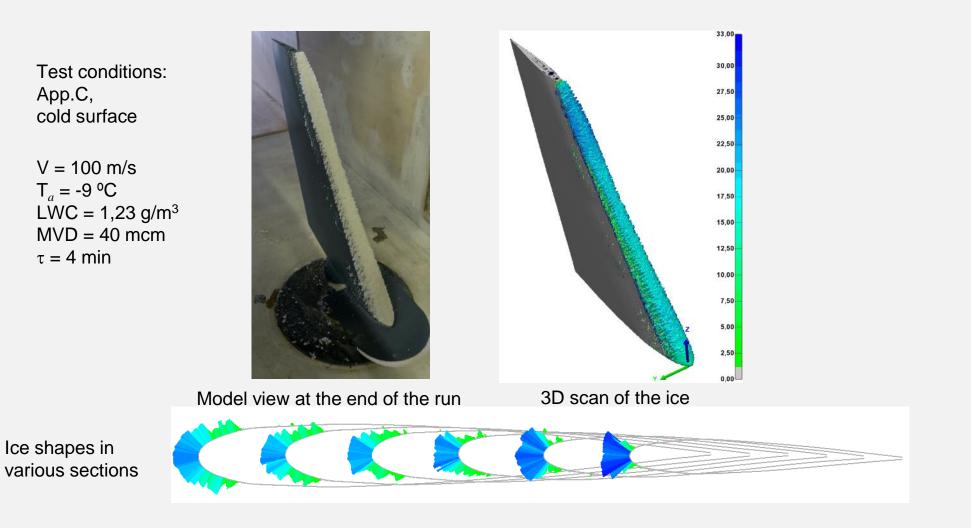
Manufacturer		Icing WT		Conditions	
AVI		TsAGI		APP C/O + Snow	
	2D Nacelle			3D Engine splitter	
Bleed airCan only	acelle inlet protection be tested during wint er months for snow	er		Electrothermal protection	
			Splitter bo Sector of inle guide vane Entrance body	et s y lnlet guide	
	<u>SLD:</u> Mach : 0.4 APPC and <i>I</i> LWC : 0.2 – Air T° : -17°	- 0.45	<u>Snow:</u> Air Speed : 50 – IWC : 1-3 Air T° : -15°C -		

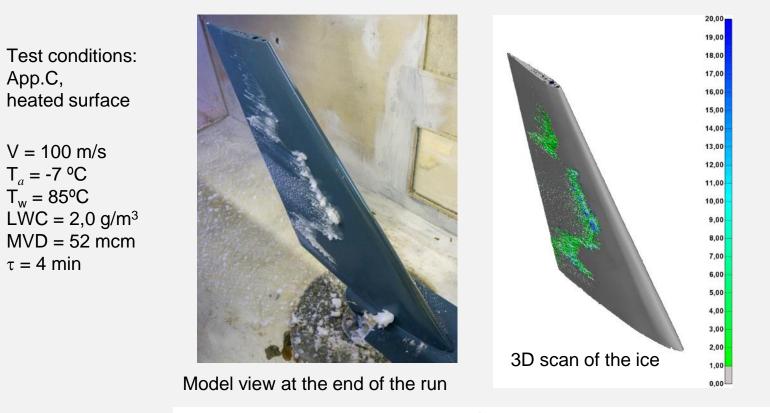
3D Scanning system


In addition to test report and traditional ice shapes tracings, provide accurate 3D scan and automatic treatment.

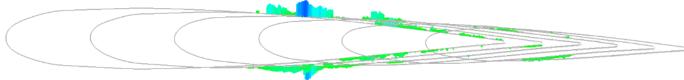
- roughness computation
- contours
- 3D surface shape

=> Developped in instrumentation part.


Averaged unwound 2D contour


19 PU

TsAGI 3D wing model tests



ÎCE

TsAGI 3D wing model tests

Ice shapes in various sections

Database

22 PU

THANK YOU FOR YOUR INTEREST

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824310. This document and its contents remain the property of the beneficiaries of the ICE GENESIS Consortium and may not be distributed or reproduced without the express written approval of the ICE GENESIS Coordinator. This text reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.

