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ICE GENESIS project overview

Creating the next generation of 3D simulation means for icing

¢ Duration: From 18t January 2019 until 315t December 2022
¢ Coordinator: AIRBUS OPERATION SAS

¢ Budget:
= Max EU Contribution: €11 964 300
= Total Estimated Project costs: €21 984 549
= Project effort in Person-months ~ 1858

¢ Advisory board: EASA, FAA, ADSE, AEROTEX,
AIRBUS Defense&Space, CSTB, DAHER, EMBRAER,PIAGGIO, SAFRAN nacelles
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ICE GENESIS project overview

Top level objective

The top level objective of the ICE GENESIS project is to provide the European aeronautical industry
with a validated new generation of:

3D icing engineering tools

(numerical simulation and Icing Wind Tunnels capabilities)

addressing
Regulation CS25 Appendix C (well-known icing envionment)
Appendix O (SLD or Supercooled Large Droplet)

and snow conditions,

for safe, efficient and cost effective design and certification of future aircraft and rotorcratft.

Novelties in Europe : 3D ice scanning system
droplet temperature measurement

. snow characterization and campaigns
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ICE GENESIS project overview

Sub-objectives

Obj#1 3D numerical tools
Obj#2 icing wind tunnels
Obj#3 large scale experimental database
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ICE GENESIS Organisation

[ WP1 Projectmanagementand governance AIRBUS
[ WP2 Dissemination & exploitation /élnmc
3D App C Stream App O Stream Snow Stream
[ WP3: Consolidation of specifications & test plans. Testfollow-up < LEONARDO ]
E T
WP4: Instrumentation for liquid icing conditions # WF5_: Instrun!entatlon fo_rs Instrumentation
DLR | & microphysical properties
[ |
[ WP6: SLD test capability &~ J WP7: Snowtest capabim?'}b Test Capability
f H 3 -
WP8: Wind tunnel tests preparation and performance for liquid icing and snow conditions DASSAULT EXPS;':‘;E;&;
8 ) . ) . .. . D - E R A WP1U: Numerical Cﬂpﬂb“ ) :Flf.lj;'.::.r:.?
L WP9 Numerical capability developmentforliquid icing condmg_[_ls_:_____] developmentfor Snow - ] Numerical
I h Capabili
WP11: Numerical tools validation in industrial environment S SAFRAN pability
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WP DEPENDENCIES

7 Perform wind tunnel | , ,
tests in |IC|UId iCing WP4 instrumentation App C&0
and snow conditions, ‘ ‘
in industrial
environment (IWT
and mockups) ( 5 ¥ | | -

WP tests capabilities App C&O

¥ Provide searchable
database of
experimental results
for validation of
numerical tools
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Snow numerical tools
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Objectives

WP 10: Numerical capability development for snow

Objectives: Improve and validate current 2D and 3D numerical tools with respect to snow
conditions, so that they can be used for both design and certification of aircraft, rotorcraft and
engines.

7 Task 10.1 Advanced experimental investigations to complement available
data (TUDA, AIT, NRC, AlH, TSAGI)

¢ Task 10.2 Model development, elementary validation and down-selection
(ONERA, AIH, TUDA, POLIMI, TSAGI, MIPT)

¢ Task 10.3 Model integration into 3D tool and preliminary capability
assessment (ONERA, AIT, POLIMI, MIPT)

Helicopter manufacturers need to demonstrate safe operations in falling and

blowing snow conditions
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Introduction

WP10: Physical phenomena related to snow conditions

Trajectory Studies Impact Studies
A A
[ [ |
—
Heat Transfer and Shedding
— Phase Change
— | Impact
- Dynamics /
liquid e Accretion
— 4
Drag coefficient model breakup Impact &
Melting model breakup model
Snow layer

Accretion model
Shedding model

Challenge: Models exist for drops and ice particles, but mechanics, dynamics

and thermodynamics of snowflakes are much poorly documented
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7 Experiments and models will be presented for the following phenomena:
= Drag and trajectory computations of snowflakes
= Melting of snowflakes in hot air streams, e.g., engine intakes
= Impact and fragmentation of snowflakes on dry surfaces

= Accretion of showflakes on surfaces
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Characterising snowflakes

Estimating geometric
parameters necessary for use
In existing drag models

Example parameters required,
depending on model
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Drag and trajectory of snowflakes

Several experiments have been performed and two models are
being pursued.

1
Experiment 1: free falling snowflakes F=CpApU? =mg
Backlight 3
O Terminal velocity is measured & 3k

using artificial snowflakes (IAG j. l —
SnowFall) and real snowflakes ’

O Mass of snowflake is
subsequently measured

__— PMMA tube

: ' Backlight2 ~ Camera 1:
Snowflake melting and o e /® ]
amera J. P
mass measurement | patee 5 X-- K- D
Camera 1: el )
front view i] 7 /\ PMMA plate
* ; D g \Mirror
11 5 mm
Camera 2:
Hot airstream side view
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Drag and trajectory of snowflakes

Experiment 2: Terminal velocity of 3D-printed snowflakes

3 — 30 monomers

A o 20 mm
2mm
Exemplary digital models B
Temperature Sensor Drag in glycerol-water mixture
= 100<Re_ <1000
D
Data max
£cquisition Light Sources and r
Diffusing Screens

Cameras

Water + Glycerol Release Mechanism

GENESIS U



Drag and trajectory of snowflakes

7 Modification of existing drag models for non-spherical particles, using
geometric snowflake descriptors, e.g.:

*HGlzer and Sommerfeld (H&S) (2008)
*Heymsfield and Westbrook (H&W) (2010)
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Drag and trajectory of snowflakes

Cp,eq» HS2008 model
(m]
o O
Op

T Approach: Simplifying the
o Snowflake |- shape by using convex hull

_ o Convex hull instead of real snowflake shape

0 1 1 1 1
0 2 4 6 8 10

Cp,eq: EXPEriment
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Drag and trajectory of snowflakes

Approach 1: Adapt 3D Hdélzer & Sommerfeld drag model for 2D parameters

D .
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Drag and trajectory of snowflakes

Approach 1: Results

missing trajectory

Sensitivity study of drag coefficient (Stokes Number!)

= Trajectory simulations using adapted H & S model
in RTA Climatic W/T and around a NACAO0012 airfoill Ay
(collection efficiency)

= Parametric study of the drag coefficient influence b= \
on the W/T trajectory and the collection efficiency S
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Drag and trajectory of snowflakes

Approach 2: Assuming a snowflake as an oblate or prolate spheroid
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Drag and trajectory of snowflakes

Approach 2: Results

Terminal velocity
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7 Experiments and models will be presented for the following phenomena:
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Melting of snowflakes

¢+ Snowflakes melt in engine intake, influencing state upon impact and
Impact outcome
» lcing severity Is strongly affected by liquid water content

» Difficulty: Liquid water content of a snowflake cannot be measured
» Solution: Melt time is measured and compared with models.
Verified models can then be used for prediction.

Experiments Melt tim> Models

JCE 5
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Melting of snowflakes

Experimental setup: Melting of snowflakes if
»  Snowflakes observed in acoustic levitator ) ;ﬁ
. S 06} R4
» Hot air stream melts snowflake 3 & Circularity of
. = . 5 04t Z ; ;‘
»  Melt time is extracted from captured video ks snowflake over
02t time
. | . .
-10 0 10 20 30
s timeins
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R 20
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15+ u
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g - Melt time for
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Computed melting time in s

Melting of snowflakes

Comparison measured and computed

] melt times
20
HAIC oblate
" Av. rel. error = 0.47
° HAIC prolate
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Mitra
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Experimental melting time in s

HAIC melting model:

dm; _
dt

Nu = 2/ ¢ + 0.55Pr'/3Rel/2*/*

Nu dm,,

Lf —?rdlé—ka(Ta — Tf) -+ Lv?

Mitra melting model:

dm,'
dt

(Le=1)
dm,,

Y odt

Li—— = — 4pi f,Chky(T, — T¢) + L

F_ | 1+014(5cRe, % si SciPRe;” <1
0.86 + 0.28551r’r3Re;r’r2 si 5(:153:‘?3;‘;2 > 1

Result: Comparison for 7 snowflakes

* Models are similar with minor
differences in Nu and f,,

* Mitra model describes physics best
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Impact and fragmentation of snowflakes

Observations: snowflakes can fragment
already at terminal velocity (U, ~ 0.7 m/s)

t = 0.00 s t = 1.67 ms t = 8.00 ms t = 29.67 ms

o s y i y TR
& % oM iwi
2mm ¥ 2 mm 2mm  E SR

Experimental setup to investigate snowflake
impaCt Non-resonant

acoustic levitator

Movable target

High-speed
camera

= |nvestigation of fragmentation threshold
= Determination of fragment sizes and velocities

z X x
g 1 x X %
o 0x’0 y
h;“ x X
E (] @ Q
’\T':: © (8] o fe)
g 05}
g Fragmentation
) for various x_Breakup
0 snowflakes sizes | © No 1|3rcakup

snowflake feret diameter dy. [mm]

Uimpact < 30 m/s

10
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Accretion of showflakes on surfaces

O High speed test bench (80m/s)

O Specific instrumentation to
characterize snow cloud

» AIRBUS Nephelometer,
MALVERN (laser diffraction)

» SEA WCM-2000 probe

O Test Matrix
O 40AT:-1:-3:-5:-7°C
O 2TAS:40:80 m/s

I% CE E’-f"' 5
GENESIS U



Accretion of showflakes on surfaces

Artificial ice crystal

After calibration of TsAGI 0.025 w
. - Natural snow
EU-1 wind tunnel w2l
accretion tests onto a |
NACA airfoil are s 0015 08

performed for artificial ice
crystals and natural snow
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Accretion in artificial crystal conditions Accretion in natural snow conditions
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Saltation of natural snow layers

The saltation of natural snow layers is being Alrflow

investigated at different flow velocities up to
50 m/s. In the test setup a laser light sheet
and high speed camera are used to
observe the snow layer saltation. The
particles sizes and concentration are being
analyzed via image post-processing for the
various flow conditions.

Saltation test setup

| D Laser

Airflow
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Conclusion & Way forward

WP10 - Numerical Capability Development for Snow
comprising experiments, modelling and simulations has extended
existing knowledge concerning drops, SLD and ice crystals to the case of
snow flakes/crystals.

O Multiple drag experiments and trajectory
computations were performed
= HAIC models adapted for snowflakes

O Melting of snowflakes in levitator | | ﬁ”
=>» Mitra model exhibits best results i~ LR

F,, model (2D) [N]
nN w

0 Snowflake impact and fragmentation onto
a surface ongoing

O Snow accretion tests ongoing
=» model development will start in soon
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