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Context

7 Objectives: improve and validate current 2D/3D numerical tools with respect to Appendix C and
Appendix O conditions, so that they can be used for both design and certification of aircratft,
rotorcraft and engines

7 Why is it so important to work on SLDs?
= Because large droplets do not behave as smaller droplets: more inertial, more energetic, ...
= Need for adapted or specific physical models

DVM 60 pum DVM 100 pm DVM 200 pm

7 Why is it so important to work on the numerical tools?
= To improve the overall performances of the industrial solvers in 3D
= To improve the solution by itself

* Appendix C is associated to clouds / “small” cloud droplets

* Appendnygﬁs associated to Freezing Drizzle and Freezing Rain conditions / Supercooled Large Droplets (SLD)
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Work plan

¥ Decomposition into 4 Tasks
= Task 9.1: Basic experiments to provide missing data for model development
= Task 9.2: Model improvements and implementation in 2D tools for calibration and preliminary validation
o Phenomena under consideration: drop impact, ice roughness, hguid-fmrunback

o More or less academic experiments performed in different labs (CU, ONERA, TUDA, TUBS)
o Improvement or development of new physical models (CIRA, ONERA, POLIMI, TUBS, TUDA, TUS)

+

= Task 9.4: Improvement of 3D ice accretion numerical methodologies (CIRA, ONERA, POLIMI, POLYMO)
o Working on numerical models for meshing (automatic meshing, remeshing) for 3D test cases

= Task 9.3: Model integration in 3D numerical tools and preliminary validation
o Combining physical models and numerical methods to answer Ice Genesis WP9 objectives
o Towards the industrial configurations of WP11
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Drop Impact — Experimental activities

7 Drop impact implies to characterize...

1 - Drop deformation

2 - Impact regime

5 - Ice Accretion 4 - Secondary droplets Melting drop
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Drop Impact — Experimental activities

7 And also new or unexpected phenomena

Supercoooled

Shroud pipe drop

lee crystals

Nucleation

Mushy
frozen drop

Impact

target \
[

Dendritically frozen drop impact
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Tir = —10°C

Vgir =180 m/s

Erosion phenomenon
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Drop Impact — Physical modelling

¢ From very detailed models...
= Droplet deformation prior to the impact

r radius of the wetted area
R, radius of the impinging drop

‘ U, drop velocity
o Analysis of the IG data provides: b = b,/\/k R, , b,=2.12 111 I‘

o Spherical droplet: 7/, =b [*Y°/p = 1t =bt*
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Drop Impact — Physical modelling

¥ To applied ones used in the industrial solvers
= Droplet deformation => how to define the radius of curvature x? k(Up) = Cp * [Cy + C; tanh(C3Up) ]
k = min(k(U,), 715)
= Mass deposition

o Adaptation of the Trontin-Villedieu and the Wright models on the impact function - R,
. . . . ONERA model: f(K,) =1 — €, —2—
o Application to an accretion experimental test case (Ice Genesis database) C2+Kn
Wright model:
m E — —
= Secondary droplets fmn = 52 = Cs[1 = sin(60)][1 - e 0.0092(K1,n=200)]
o Approach based on Riboux-Gordillo and Burzinsky-Bansmer-Roisman models
o Description of the spray by a log-normal law defined by parameters estimated from RG
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Experimental activities — Ice Roughness

# Obijective: investigate influence of icing conditions on the characteristics of ice accretion roughness

7 Experiments performed in TUBS Icing Wind Tunnel
= HMDI airfoil: Span=0.5m, Chord=0.7m, non-symmetrical airfoil based on NASA CRM
= Operating conditions encompassing both App.C and App. O
Vair =40m/s ; AcA =0°;T, = —5to — 16 °C ; Reynolds number Re = 2e6
MVD,, =~ 19um (App.C) & 70um (App. 0) ; LWC,, = 0.88g/m? (App. C) & 0.56g/m>(App. 0)
Accretiontime t = 1.5,3,6,9 min
Experiments include several levels of 7
Combinations of n; , and A, not investigated before
Insight on effects of non-symmetric airfoils

Airfoil sketch

Iced airfoil in the test section Accreted ice
7CE A Front view
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lce Roughness — Experimental activities

7 How to analyse the ice roughness?
= Digitalization of the ice shape (photogrammetry method)
= Development of tools for statistical analysis )
= Post-processing of the experimental data
= Assessment of the tools .
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lce Roughness — Experimental activities

7 How to analyse the ice roughness? ST
= Digitalization of the ice shape (photogrammetry method) ; i

= Development of tools for statistical analysis
= Post-processing of the experimental data
= Assessment of the tools
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lce Roughness — Physical modelling

¥ Model based on Fortin’s bead model (roughness height) and Abu-Gahnnam & Shaw model (transition)

+ new transition model

Ty

BL + Ice-Accretion

= Roughness height model
Bead size: e, = agLRe,“*We,“2H,(0, A0)H,(Re}) ke = azep

= Transition model

)/ — 1 — 6—317732

= Optimization process to determine the best values a5 of and n using an IA approach
Performed on 3 of the Han & Palacio’s Heat Transfer Coefficient (htc) database

ICE ¢
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Physical modelling — Ice Roughness

7 Assessment of the model based on
= Roughness height characteristics (TUBS database)
= |Impact of the roughness height on measured data (htc - Han & Palacio’s database, ice shape - TUBS database)
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Numerical methods - Introduction

¥ Objective: develop efficient numerical methods to handle 3D simulations 3D ice shape
= Aiming at Predictor-Corrector or MultiStep approaches
= Considering mesh adaptation to account for ice surface growth

Flight data
Cloud data

Initial geometry ‘
Clean geometry —.c———
Aerodynamic Solver
CFD solver - PoliMice
Flow field shosbiety

Domain > [ Ice accretion Ice accretion

and mesh | - parameters 1 calculation
Trajectories of .

T water droplets

Data saving

Geometry
= update
Mesh morphing { y

= But
o On physical grounds, 3D ice shape can be quite complex, 3D ice # 2D ice
o On numerical/modelling grounds, need to deal with mesh displacement, ice density modelling, mass conservation, ...

Mesh displacement

ICE ¢
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Numerical methods - Results

7 Several candidate methods have been developed by the partners:
= 3D Multi-step Immersed Boundary Method, Lagrangian displacement of surface mesh for ice accretion only (CIRA)
3D Predictor-Corrector plus remeshing, with Lagrangian displacement (ONERA)
3D Multi-step on conformal meshes with level-set and remeshing (POLIMI)
3D Multi-step on conformal meshes with Lagrangian (POLYMO)
Very preliminary approaches for mass conservation are available

7 Definition of Numerical benchmark tests for T9.4
= Baseline calculation: NACA23012 2D extruded cases (Ice Prediction Workshop database)

103 -23° 92528 30 0.42 2° 300 Rime ice
103 -12.6° 91700 21.5 1.64 2° 400 Monomodal SLD
103 -12.6° 91700 215 1.64 2° 400 Bimodal SLD

= Benchmark tests: 30° swept NACAO0012 (Ice Prediction Workshop database)

103 -16° 92321 34.7 0.5 0° 1200 Rime ice
103 -7° 92321 34.7 0.5 0° 1200 Glaze ice
JCE <5
I
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Numerical methods — Results
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Numerical methods — Some more results

7 Observations
= Physics of 3D ice accretion results in non-negligible numerical difficulties
= Unsteady ice accretion is important to describe the whole process
= Models are still not satisfactory (e.g. ice density)

:“‘:‘:;““’? \H‘ mEbARS .‘;7.

Collection efficiency coefficient: single step (left), multistep (right)

Mesh issues with very refined grid leading very small ice structures

7CE 7
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Conclusions & Perspectives

Z Main achievements on the experimental and modelling parts so far

= Academic experiments performed on two important topics for SLD: drop impact and roughness
Roughness

o Experimental methodology clearly defined

o Ongoing activity to build a model to account for roughness & transition
Drop impact

o Insights gained thanks to some experiments or some complex/basic models but...

o Improvements of the existing models are not that conclusive
New phenomena to be possibly investigated (Dendritically Frozen Drop, erosion, drop deformation)
High-altitude effects to be investigated

7 Main achievements on the numerical part so far
= Extension of the capabilities of the 3D tools ongoing (Predictor-Corrector, Multistep)

JCE <5
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