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Context

Objectives: improve and validate current 2D/3D numerical tools with respect to Appendix C and 

Appendix O conditions, so that they can be used for both design and certification of aircraft, 

rotorcraft and engines

Why is it so important to work on SLDs?

▪ Because large droplets do not behave as smaller droplets: more inertial, more energetic, …

▪ Need for adapted or specific physical models

Why is it so important to work on the numerical tools?

▪ To improve the overall performances of the industrial solvers in 3D

▪ To improve the solution by itself

* Appendix C is associated to clouds / “small” cloud droplets

* Appendix O is associated to Freezing Drizzle and Freezing Rain conditions / Supercooled Large Droplets (SLD)
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Work plan

Decomposition into 4 Tasks

▪ Task 9.1: Basic experiments to provide missing data for model development

▪ Task 9.2: Model improvements and implementation in 2D tools for calibration and preliminary validation

o Phenomena under consideration: drop impact, ice roughness, liquid film runback

o More or less academic experiments performed in different labs (CU, ONERA, TUDA, TUBS)

o Improvement or development of new physical models (CIRA, ONERA, POLIMI, TUBS, TUDA, TUS)

+
▪ Task 9.4: Improvement of 3D ice accretion numerical methodologies (CIRA, ONERA, POLIMI, POLYMO)

o Working on numerical models for meshing (automatic meshing, remeshing) for 3D test cases

||
▪ Task 9.3: Model integration in 3D numerical tools and preliminary validation

o Combining physical models and numerical methods to answer Ice Genesis WP9 objectives

o Towards the industrial configurations of WP11
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Drop Impact – Experimental activities

Drop impact implies to characterize…
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𝜅

𝑅𝑙𝑜𝑐
𝑽𝒂𝒊𝒓 = 𝟏𝟖𝟎

𝒎

𝒔
; 𝑻𝒂𝒊𝒓 = −𝟐,−𝟏𝟎°𝑪 ; 𝜽 = 𝟎°

Melting drop

𝑽𝒂𝒊𝒓 = 𝟏𝟎𝟎 Τ𝒎 𝒔

𝑻𝒂𝒊𝒓 = −𝟐°𝑪

𝑽𝒂𝒊𝒓 = 𝟏𝟖𝟎 Τ𝒎 𝒔

Temperature influence (5, -10, -20)

𝑽𝒂𝒊𝒓 = 𝟏𝟎𝟎 Τ𝒎 𝒔

1 - Drop deformation
2 - Impact regime

3 - Mass deposition

4 - Secondary droplets5 - Ice Accretion



CO

Drop Impact – Experimental activities

And also new or unexpected phenomena 
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𝑻𝒂𝒊𝒓 = −𝟏𝟎°𝑪

𝑽𝒂𝒊𝒓 = 𝟏𝟖𝟎 Τ𝒎 𝒔

Dendritically frozen drop impact

𝑫𝟎 ≈ 𝟑𝟐𝟓 µ𝒎 ; 𝑽𝒂𝒊𝒓 = 𝟏𝟒𝟎 𝒎/𝒔 ; 𝑻𝒂𝒊𝒓 = 𝟏𝟓°𝑪

𝑷𝒂𝒊𝒓 = 𝟏 𝒃𝒂𝒓

𝑷𝒂𝒊𝒓 = 𝟎. 𝟔 𝒃𝒂𝒓

Erosion phenomenon Altitude effect
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Drop Impact – Physical modelling

From very detailed models…

▪ Droplet deformation prior to the impact

o Spherical droplet: Τ𝑟 𝑅𝑜 = 𝑏 ൗ𝑡 𝑈𝑜
𝑅𝑜 ֜ 𝑟+ = 𝑏 𝑡+

o Analysis of the IG data provides: 𝑏 = Τ𝑏𝑜 𝜅 𝑅𝑜 , 𝑏𝑜= 2.12

▪ Mass deposition

o Depending on the splashing parameter 𝛽

o Flight conditions may exceed 𝛽 > 0.4 (what happens above 0.45?)

▪ Liquid film runback (not presented here)
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𝑟 radius of the wetted area

𝑅𝑜 radius of the impinging drop

𝑈𝑜 drop velocity

𝜅

𝑅𝑙𝑜𝑐

Curvature influence

֜ influence on the splashing parameter 𝛽 (Riboux-Gordillo model)

Residual volume on the surface
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Drop Impact – Physical modelling

To applied ones used in the industrial solvers
▪ Droplet deformation => how to define the radius of curvature 𝜅?

▪ Mass deposition

o Adaptation of the Trontin-Villedieu and the Wright models on the impact function

o Application to an accretion experimental test case (Ice Genesis database)

▪ Secondary droplets

o Approach based on Riboux-Gordillo and Burzinsky-Bansmer-Roisman models

o Description of the spray by a log-normal law defined by parameters estimated from RG
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𝜅 𝑈0 = 𝐶0 ∗ [𝐶1 + 𝐶2 tanh 𝐶3𝑈0 ]

𝜅 = min(𝜅 𝑈0 , 715)

ONERA model: 𝑓 ෩𝐾𝑛 = 1 − 𝐶1
෩𝐾𝑛²

𝐶2+෩𝐾𝑛²

Wright model:

𝑓𝑚 =
𝑚𝑆

𝑚0
= 𝐶3 1 − 𝑠𝑖𝑛 𝜃0 1 − 𝑒−0.0092 𝐾𝐿,𝑛−200

Droplet deformation
Mass deposition Mean diameter vs. splashing parameter
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Experimental activities – Ice Roughness

Objective: investigate influence of icing conditions on the characteristics of ice accretion roughness

Experiments performed in TUBS Icing Wind Tunnel

▪ HMDI airfoil: Span=0.5m, Chord=0.7m, non-symmetrical airfoil based on NASA CRM

▪ Operating conditions encompassing both App.C and App. O

𝑉𝑎𝑖𝑟 = 40 m/s ; 𝐴𝑜𝐴 = 0° ; 𝑇∞ = −5 to − 16 °𝐶 ; 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑅𝑒 ≈ 2𝑒6

MVD∞ ≈ 19µm App. C & 70μm (App. O) ; LWC∞ ≈ 0.88g/m³ App. C & 0.56g/m³(App. O)

Accretion time t = 1.5, 3, 6, 9 min

Experiments include several levels of 𝜂𝑓,0

Combinations of 𝜂𝑓,0 and 𝐴𝑐 not investigated before

Insight on effects of non-symmetric airfoils
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Iced airfoil in the test section

Appendix C, -8°C / 3 min

Appendix O, -8°C / 3 min

Airfoil sketch
Accreted ice

Front view
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Ice Roughness – Experimental activities

How to analyse the ice roughness?

▪ Digitalization of the ice shape (photogrammetry method)

▪ Development of tools for statistical analysis

▪ Post-processing of the experimental data

▪ Assessment of the tools
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hK (orange) and hRMS (blue)  vs. curvilinear abscissa
Top view: clean and iced airfoil

Bottom view: hmean (slices in red, mean in black dot)
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Ice Roughness – Experimental activities 

How to analyse the ice roughness?

▪ Digitalization of the ice shape (photogrammetry method)

▪ Development of tools for statistical analysis

▪ Post-processing of the experimental data

▪ Assessment of the tools
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Ice shape (left) / kRMS (right)

Rq comparison with McClain’s model

T= -8°C / Top view App.C / Bottom view App.O

App. O

T = -8°C ; t = 6 min

App. C

T = -12°C ; t = 3 min
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Ice Roughness – Physical modelling

Model based on Fortin’s bead model (roughness height) and Abu-Gahnnam & Shaw model (transition) 

▪ Roughness height model

▪ Transition model 

▪ Optimization process to determine the best values 𝛼3 of and 𝜂 using an IA approach

Performed on 3 of the Han & Palacio’s Heat Transfer Coefficient (htc) database 
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BL + ks model Ice-Accretion
𝜏𝑤

+ new transition model

𝑇𝑤

Bead size: 𝑒𝑏 = 𝛼0𝐿𝑅𝑒𝜏
𝛼1𝑊𝑒𝜏

𝛼2𝐻1(𝜃, Δ𝜃)𝐻2(𝑅𝑒𝑏) 𝑘𝑠 = 𝛼3𝑒𝑏

𝛾 = 1 − 𝑒−𝛽1𝜂
𝛽2
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Physical modelling – Ice Roughness

Assessment of the model based on 

▪ Roughness height characteristics (TUBS database)

▪ Impact of the roughness height on measured data (htc - Han & Palacio’s database, ice shape - TUBS database)

ICE GENESIS Public Workshop - 3rd November 2022 12

-8°C, 

3 min, 

T01-06

-8°C, 

1.5 min, 

T01-08

Ice thickness 

intermediate between 

the 2 experimental ice 

shapes

Heat transfer coefficient comparisons

▼

Good agreement for most of the cases

Roughness height (left) / Ice thickness (right) 

comparisons
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Numerical methods - Introduction

Objective: develop efficient numerical methods to handle 3D simulations

▪ Aiming at Predictor-Corrector or MultiStep approaches

▪ Considering mesh adaptation to account for ice surface growth

▪ But

o On physical grounds, 3D ice shape can be quite complex, 3D ice ≠ 2D ice

o On numerical/modelling grounds, need to deal with mesh displacement, ice density modelling, mass conservation, …
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3D ice shape

Mesh displacement
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Numerical methods - Results

Several candidate methods have been developed by the partners:

▪ 3D Multi-step Immersed Boundary Method, Lagrangian displacement of surface mesh for ice accretion only (CIRA)

▪ 3D Predictor-Corrector plus remeshing, with Lagrangian displacement (ONERA)

▪ 3D Multi-step on conformal meshes with level-set and remeshing (POLIMI) 

▪ 3D Multi-step on conformal meshes with Lagrangian (POLYMO)

▪ Very preliminary approaches for mass conservation are available

Definition of Numerical benchmark tests for T9.4

▪ Baseline calculation: NACA23012 2D extruded cases (Ice Prediction Workshop database)

▪ Benchmark tests: 30° swept NACA0012 (Ice Prediction Workshop database)
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Run V [m/s] T [C] P [Pa]
MVD 

[m]

LWC 

[g/m3]

AoA 

[°]
Time [s] Remarks

Case 241 103 -23° 92528 30 0.42 2° 300 Rime ice

Case 251 103 -12.6° 91700 21.5 1.64 2° 400 Monomodal SLD

Case 252 103 -12.6° 91700 21.5 1.64 2° 400 Bimodal SLD

Case 361 103 -16° 92321 34.7 0.5 0° 1200 Rime ice

Case 362 103 -7° 92321 34.7 0.5 0° 1200 Glaze ice
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Numerical methods – Results
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EXP.

SIMBA-ICE

UZEN-IMP3D-MESS3D

Case 361 – Rime ice (CIRA, ONERA)

• Correctly captured in 3D

Case 362 – Glaze ice (POLIMI)

▪ Less correctly captured in 3D

▪ Ice density plays a role

Case 241 – Rime ice (POLYMO)

• Stochastic approach vs. Deterministic approach
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Numerical methods – Some more results

Observations

▪ Physics of 3D ice accretion results in non-negligible numerical difficulties

▪ Unsteady ice accretion is important to describe the whole process

▪ Models are still not satisfactory (e.g. ice density)
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Collection efficiency coefficient: single step (left), multistep (right) 
Multi-connected ice shapes (ice in blue)

Mesh issues with very refined grid leading very small ice structures
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Conclusions & Perspectives
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Main achievements on the experimental and modelling parts so far

▪ Academic experiments performed on two important topics for SLD: drop impact and roughness

▪ Roughness

o Experimental methodology clearly defined

o Ongoing activity to build a model to account for roughness & transition

▪ Drop impact

o Insights gained thanks to some experiments or some complex/basic models but…

o Improvements of the existing models are not that conclusive

▪ New phenomena to be possibly investigated (Dendritically Frozen Drop, erosion, drop deformation)

▪ High-altitude effects to be investigated

Main achievements on the numerical part so far

▪ Extension of the capabilities of the 3D tools ongoing (Predictor-Corrector, Multistep)
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THANK YOU


