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Objectives
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Improve and validate tools to predict the influence of 

snow conditions on aircraft, rotorcraft and engines. 
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Transport / Snowflake Drag
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Transport / Snowflake Drag

Experiment 1: Free falling snowflakes

Terminal velocity is measured using artificial 

snowflakes (IAG SnowFall) and real snowflakes

Mass of snowflake is subsequently measured
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Snowflake melting and mass

measurement
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Transport / Snowflake Drag

Experiment 2: Terminal velocity of 3D-printed snowflakes

Full geometry known

Available all year around for multiple measurements
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Transport / Snowflake Drag

New models for drag coefficient of snowflakes:

Approximation of snowflake geometry by a convex shape

Calculation of drag coefficient of simplified shape from Hölzer and Sommerfeld (2008) model

𝐶d = 𝑓(𝑅𝑒,Φ,Φ⊥)
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based on convex shape

3D convex hull 2D convex hull spheroidHeymsfield & Westbrook (2010)

new

Aguilar, B. et al. (2022). Ice Crystal Drag Model Extension to Snowflakes: Experimental and Numerical Investigations, AIAA Journal 0 0:0, 1-14. 

Heymsfield, A. J., & Westbrook, C. D. (2010). Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field Measurements, Journal of the Atmospheric Sciences, 67(8), 2469-2482.
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Transport / Snowflake Drag

Validation of two exemplary newly developed models
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3D convex hull model 2D prolate spheroid model

Boris Aguilar et al., Ice Crystal Drag Model Extension to Snowflakes: Experimental and Numerical Investigations, AIAA Journal 0 0:0, 1-14 
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Transport / Snowflake Melting
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Transport / Snowflake Melting

Experimental setup
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Köbschall, K. et al. (2022). Shape Evolution of a Melting Snowflake, AIAA 2022-3371. AIAA AVIATION 2022 Forum.
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Transport / Snowflake Melting
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warm airflow

Köbschall, K. et al. (2022). Shape Evolution of a Melting Snowflake, AIAA 2022-3371. AIAA AVIATION 2022 Forum.
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Transport / Snowflake Melting
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Köbschall, K. et al. (2022). Shape Evolution of a Melting Snowflake, AIAA 2022-3371. AIAA AVIATION 2022 Forum.



CO

Transport / Snowflake Melting

Model for shape evolution of a melting snowflake
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d𝑑
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= −

ሶ𝑚f

𝛼𝑑𝛽−1
= −

𝜋𝑑2−𝛽

𝛼𝐿f
Nu𝑘a 𝑇a − 𝑇f + Sh𝜌a𝐷v,a 𝜔a − 𝜔s 𝐿v

With the structural model 𝑚i = 𝛼𝑑𝛽 the following differential equation yields the size evolution of 

the particle

Köbschall, K. et al. (2022). Shape Evolution of a Melting Snowflake, AIAA 2022-3371. AIAA AVIATION 2022 Forum.
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Transport / Snowflake Melting
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𝑚 1.515 mg

𝑑 8.21 mm

𝑡m 4.38 s

𝑇a 27 °C

𝑢 0.58 m/s

𝑅𝐻 66.5 %

Köbschall, K. et al. (2022). Shape Evolution of a Melting Snowflake, AIAA 2022-3371. AIAA AVIATION 2022 Forum.
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Transport / Snowflake Melting

Model for liquid water fraction of a melting snowflake
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Derived from the proposed snowflake bulk density

𝜌p =
𝜌p0 + 𝜌w

2
+
𝜌w − 𝜌p0

2
tanh

𝑐1
1 − 𝑌w

𝑐2
−

𝑐1
𝑌w

𝑐2

with 𝑐1 = 1.5 and 𝑐2 = 3.5
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Transport / Snowflake Melting

Melt time model
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Melt time prediction significantly improved in 

comparison to previously available models

Oblate spheroid assumption for the approximate 

volume of the spheroid applied

In case of an unknown snowflake mass, mass-size 

relationships are required → WP5
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Snowflake Impact
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Snowflake Impact

Breakup threshold investigated experimentally and modeled

Snowflake fragmentation studied and particle size distribution of secondary particles captured

Snowflake impact at 11 m/s onto a clean solid substrate

ICE GENESIS Public Workshop – 3rd November 2022 19

analyzed particle tracksraw video analysis video
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Snowflake Impact

Results

19 experiments, impact velocity of 𝑈0 = 11 m/s

Fit of left truncated Weibull distribution, truncation 

value: 𝑑 = 0.073 mm → size of smallest ice structures
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Truncated Weibull probability density function: 

𝑓 𝑑 =
𝜈

𝜆
⋅
𝑑

𝜆

𝜈−1

⋅ exp −
𝑑

𝜆

𝜈

if 𝑑 > 0.073 mm

𝜆 = 0.1284, 𝜈 = 1.165
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Snow Accretion
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Snow Accretion

Optimization of model coefficients for snow accretion
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𝜀s = 𝐹 𝜂m = 𝐾c − 2 𝜂m
3 + 3 − 2𝐾c 𝜂m

2 + 𝐾c𝜂m

𝜀er = 𝐸
𝑉imp,c
𝑡

𝑉0

2
𝑦𝑙,0

𝑦𝑙,0 −min(𝑦𝑙 , 𝑦𝑙,0)
1 + 𝑙0𝜅

2

𝐾c = 0.92, 𝐸 = 0.62 and 𝑦𝑙,0 = 0.77 𝐾c = 1.32, ത𝐸 = 0.47 and 𝑦𝑙,0 = 0.58
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Snow Accretion

Water transport in melting snow layers
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heating film
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Snow Accretion

Evolution of saturation (liquid volume fraction in pores) 

Exemplary results at 5340 W/m2 heat flux
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30 % porosity 40 % porosity 50 % porosity
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Conclusion

Highlights

Improved prediction of snowflake drag and melting
▪ Snowflake trajectory and liquid water fraction can be predicted

Impact and fragmentation of snowflakes investigated
▪ Breakup threshold and fragment size distribution characterized

Coefficients in ice crystal accretion model optimized

to improve prediction of snow accretion
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Objectives

Experimental data and models exist for drops and ice particles, but mechanics, dynamics and 

thermodynamics of snowflakes are less well documented

De-risk power plant system design before in-flight demonstration

Secure future program development and certification

ICE GENESIS Public Workshop – 3rd November 2022 29

Improve and validate current 2D and 3D numerical tools with

respect to snow conditions, so that they can be used for both

design and certification of aircraft, rotorcraft and engines.❄
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Timeline & Milestones
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Task 10.1: Experiments

Task 10.2: Model development

Task 10.3: Model integration

WP10: Snow numerical capability

first set of basic experiments final set of basic experiments snow models

✓

(✓)

…

snow model integration

2019 2020 2021 2022
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Transport / Drag

Sensitivity study with a NACA0012
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Snow Accretion

Preliminary study to improve erosion and sticking model for accretion

Preliminary study based on CSTB test campaign database

First numerical simulations done with HAIC sticking and erosion model¹ 
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¹ “A comprehensive accretion model for glaciated icing conditions”, P. Trontin, P. Villedieu,, International Journal of Multiphase Flow, 2018.
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Snow Accretion

Sensitivity with respect to TWC and LWR

Goal: Characterize the error on final ice shapes 

calculated with HAIC erosion and sticking models 

with uncertain water concentration
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Overestimation of TWC & LWC measured 

values by the wcm2000 probes?
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Snow Accretion

Optimization of model coefficients for snow accretion
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Optimum from modified inputs and 

model coefficients gives same results!
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