ICE GENESIS Final Public Workshop

6-7 December 2023 Toulouse, France

Ground tests-experimental database WP8

DASSAV, CIRA, AIIS SAE, Cranfield University, LDO, SONACA , CNRC

Wind tunnel tests in supercooled liquid icing conditions

Tests in industrial environment : 7 mockups

DASSAV@CIRA

App. O

SAFRAN AIRCRAFT ENGINES@Cranfield

m Smm

App. C

CNRC fan rotor

App. C

Cascade rig: mock-up presentation

Downstream stator grid

Upstream stator grid

ICE GENESIS Final Public Forum, Toulouse - 6-7 December 2023

CO

Cascade rig : test matrix

Anti-icing tests

- 31 different tests are realized
- Parameter range :
 - Air speed in the main stream : from 40 m/s to 80 m/s
 - Air temperature: from -20°C to -5°C
 - o LWC: from 0.4 g/m3 to 1.0 g/m3
 - IGV Pitch from 0° to 35° (with the main air flow direction)
- Test sequence
 - Stabilization of aerodynamic in dry condition
 - o Activation of the heaters
 - o Activation of the cloud
 - Heaters power decrease step by step until shut down
 - cloud stops, air speed decrease to 40m/s then activation of the heaters at full power

Accretion ice tests & 3D scan

- 17 different tests are realized
- Parameter range :
 - Air speed in the main stream : from 40 m/s to 80 m/s
 - Air temperature: from -20°C to -5°C
 - o LWC: from 0.4 g/m3 to 1.0 g/m3
 - o IGV Pitch at 0°
- Test sequence:
 - Stabilization of aerodynamic in dry condition
 - o Activation of the cloud during the specified time
 - o Stop of the cloud
 - Extraction of upstream grid to scan the 3 center blades.
- For few test cases, density of ice accreted on the leading edge is estimated.
 - After 3D scan, the ice is removed for weighing. Then the blade is scanned a second time (without ice on LE).
 - The volume of the weighed ice will be get by the difference of the two 3D scans.

Cascade rig : ice accretion

Upstream Grid

3D scan operation performed by AIIS

Cascade rig

- This test campaign leads to :
 - Build an experimental database for ice accretion on 3D engine parts with cold and heated walls with a high fidelity device (scans)
 - Study ice accretion occurrence in a primary vein representative of new engine architectures
- These data are available in the ICE-GENESIS database (restricted to the Consortium)

CNRC : fan rotor test rig

- CNRC Design and Fabrication Services' concept
- 22 blades individually manufactured and assembled in specifically designed hub
- Maximum 4000 RPM

CNRC : test matrix

TAT	MVD	LWC	Rotation speed	Air Speed	Altitude	Time Accretion
°C	μm	g/m3	rpm	m/s	ft	S
-3	20	0.3	1500	20	0	240
-10	20	0.3	1500	20	0	240
-10	20	0.3	1500	20	0	360
-10	20	0.3	2000	20	0	360
-10	20	0.3	2500	20	0	360
-10	20	0.3	1000	20	0	360
-10	20	0.3	500	20	0	360
-3	20	0.3	1500	20	0	360
-25	20	0.8	1500	20	0	240
-3	20	0.8	1500	20	0	240
-3	20	0.8	1500	20	0	240
-3	20	0.8	1500	20	0	480
-3	20	0.3	2500	35	0	240
-3	20	0.3	1500	20	12000	360

CNRC : ice pictures and scans

TAT = -25°C, MVD = 20 μm, LWC = 0.8 g/m³, RPM = 1500, TAS = 20 m/s

ÎCE 📢

GFA

ICE GENESIS Final Public Forum, Toulouse - 6-7 December 2023

CNRC : fan rotor test rig

- Data not uploaded yet in the ICE-GENESIS database
- Could be used for 3D numerical tools validation

3D Wing

Dassault Generic 3D Wing
High lift device (slat) retracted or extended
Tested at CIRA facility July, 2022

3D Wing : configurations

Flap

Slat

CTL:

HLD :

Flap0°SlatretractedAOA4.5°

 $\begin{array}{ccc} 0^{\circ} & LDG: & Flap & 15^{\circ} \\ ext & Slat & ext^{\circ} \\ 8.5^{\circ} & AOA & 13^{\circ} \end{array}$

ICE GENESIS Final Public Forum, Toulouse – 6-7 December 2023

3D Wing : measurements

- Pressure taps (aero tests)
- Manual ice tracings at 2 locations
- 🖗 Laser scans
- 🖗 Icing blade
- 🖗 Ice density (mass & volume)
- Skin thermocouples
- Hot air mass flow & temperature
- 🖗 Videos

3D Wing : Test Matrix Overview

- Total amount of 22 runs
- 3 App. O conditions :
 - FZDZ1 : MVD= 18.4 µm; LWC= 0.34 g/m³; bimodal
 - FZDZ2_1 : MVD= 65 μm; LWC= 0.2 g/m³; bimodal
 - FZDZ2_2 : MVD= 98 µm ; LWC= 0.2 g/m³; monomodal
- [•] 1 App. C condition :
 - DVM= 20 μm; LWC= 0.34 g/m³
- 3 impingement test cases (SLD ice accretion with short duration)
- 10 App.O FZDZ ice shapes (45 min. exposure)
- 2 App. C ice shapes (45 min. exposure)
- 7 ice protection system (bleed air) runs (6 App.O, 1 App.C)
- Particle drop size sensitivities in SLD FZDZ conditions

3D wing : HLD ice shapes (id#4)

l	Test #4									
	SAT [degC]	V [m/s]	Mach [-]	Altitude [m]	AoA [deg]	δ _{flap} [deg]	MVD [μm]	LWC [g/m ³]	Exp. Time [min]	PSD
	-16,24	116,02	0,361	4572	4,43	0,00	65,0	0,197	44,97	bimodal

3D wing : HLD ice shapes comparison

- Slight differences between SLD Particle Size Distribution (impingement limits)
- Usual coherence between manual tracings and cuts into the scan geometries
- Cloud uniformity degradation noticed when the drop size increases
- Regarding the ice mass, assuming a "standard" bulk ice density, SLD ice shapes should be heavier than App.C ones, but is this assumption still valid ?

3D wing : CTL ice shapes (id#8)

Test #8									
SAT [degC]	V [m/s]	Mach [-]	Altitude [m]	AoA [deg]	δ _{flap} [deg]	MVD [μm]	LWC [g/m ³]	Exp. Time [min]	PSD
-15,05	110,71	0,344	4572	8,45	0,00	65,0	0,209	45,00	bimodal

3D wing : CTL ice shapes comparison

- Significant differences : impingement limits, max thickness
- Cloud uniformity degradation with drop size growth
- Non uniformity ⇒ exaggerated differences between mean ice shapes ?
- Potential large differences in ice mass between SLD and App.C ice shapes

3D wing : conclusions

- Large series of tests performed on an aircraft representative configuration with High Lift device and tunnel conditions close to inflight encounters
- Ice shapes data for different SLD FZDZ clouds and long time duration (45 min.)
- High fidelity set of data with the use of a laser scan device
- Preliminary results for an Ice Protection system comparing App. C performance vs. App. O FZDZ
- Ranking the most critical ice shapes in FZDZ with different PSD and MVD is not easy, even when compared to App .C
- Pulk ice density always ≥ 900 kg/m³, whatever the icing cloud is; "apparent" ice density was not assessed
- With IPS activated, no significant runback was observed in SLD FZDZ once the design is efficient in App.C (CM-IM)
- Some of these test cases were used in WP11 for 3D numerical tools validation.

3D wing : conclusions

Some remaining gaps have been identified :

- Cold temperature investigations : ice shapes and ice protection
- Cloud uniformity still needs to be improved : bimodal PSD, large droplet size
- Droplet temperature uncertainties and impact also needs to be better identified

Icing database for supercooled conditions

Icing database

- Top-level goal of ICE GENESIS: <u>https://icing-database.eu</u>
 - Generation of an online searchable and extendable database covering classical icing conditions (Appendix C) and SLD icing conditions (Appendix O)
- What is in the database?
 - 390 individual icing runs, 17 different test objects
 - ICE GENESIS data & legacy data from previous projects and sources (e.g., NASA SLD database)
 - Some data are public, others restricted to the Consortium

	minimum	maximum
Velocity spectrum	40 m/s (78 kt)	205 m/s (400 kt)
SAT spectrum	-25 °C	-2.5 °C
LWC spectrum	0.12 g/m ³	1.53 g/m³
MVD spectrum	15 µm	225 µm
Icing duration	1 min	2:45 h

ICE GENESIS Final Public Forum, Toulouse – 6-7 December 2023

CO