ICE GENESIS Final Public Workshop

6-7 December 2023 Toulouse, France

Snow Models

O. Rouzaud (ONERA) J. Hussong (TUDA) A. Zanon (AIT)

Physical description

Partners involved: AIH, AIT, ONERA, POLIMI, TUDA + collaboration with WP5

ÎCE 🚳

ICE GENESIS M60 Final Public Workshop @ Toulouse - 6-7 December 2023

Transport Models

AIH, ONERA, TUDA

Snowflake Drag Model

- Objective: develop/extend a drag model adapted for the various snowflake particles
- Methodology
 - Based on some academic experiments performed during ICE GENESIS with natural/synthetic snowflakes
 - Choice of simplified geometries
 - Preliminary assessment and down selection of the models using 2D solvers
 - Implementation and assessment on 3D solvers

Snowflake Drag Model

Assessment and down-selection of the model

- Comparison vs. experimental data
 - => Down-selection of the Hölzer-Sommerfeld model

+

Oblate spheroid description

 Relevancy of the 2D geometric parameters wrt their 3D counterparts

6

CO

Snowflake Drag Model

Implementation and preliminary assessment into ONERA 3D solvers and ANSYS CFX

Z

Snowflake Melting Model

- Provide the state of the state
- Methodology
 - Based on some academic experiments performed during ICE GENESIS
 - Preliminary assessment and down-selection of the models using 2D solvers
 Mitra model, HAIC model (modified Nusselt-Sherwood / mNS)
 - Integration and assessment in 3D solvers

Snowflake Melting Model

Assessment and down-selection of the models

Comparison vs. experimental data

=> Down-selection of the modified-NS model + Oblate spheroid description

Snowflake Melting Model

Models tested: Modifications of the HAIC model (mNS) + oblate spheroid approximation

- Rather good agreement with the experimental data
- Rather good agreement between 2D and 3D results
- Discrepancies between the numerical results due to differences between the thermophysical properties

	Runs	Т а °С	<i>v</i> _a ms ⁻¹	RH -	m_{p_0} mg	т _{ро} °С	$t_m \approx t_{circ}$ s	$ ho_{p_0}^{ m bulk}$ kgm ⁻³	C _{i0}	Φ _{*0} -
Dense aggregates	TUDA Run13	26.0	0.5	26	1.666	-14.0	15.5	112	0.24	0.91
	TUDA Run25	27.4	0.6	35	2.041	-12.5	15.2	120	0.21	0.86
	IAG Run18	28.4	1.0	6	0.723	-7.0	12.8	145	0.36	0.93
	IAG Run27	33.1	0.9	4	0.318	-4.0	6.9	144	0.35	0.88
	IAG Run38	32.4	0.9	1	0.240	-7.0	8.9	132	0.28	0.98

	Runs	т _а °С	<i>v</i> _a ms ⁻¹	RH -	m_{p_0} mg	т _{ро} °С	$t_m \approx t_{circ}$ s	$ ho_{p_0}^{bulk}$ kgm ⁻³	C _{i0}	Φ _{*0} -	
gates	TUDA Run26	24.4	0.6	41	1.578	-14.7	10.7	76	0.32	0.93	
	TUDA Run27	28.0	0.7	36	1.711	-14.0	8.7	43	0.20	0.88	
	TUDA Run28	25.6	0.6	38	1.575	-16.1	10.3	43	0.14	0.92	(c)
aggre	TUDA Run36	26.6	0.7	38	0.449	-14.2	2.9	23	0.20	0.69	ind tin
light	TUDA Run37	28.6	0.6	34	2.046	-14.4	7.9	30	0.15	0.76	t melt
-	TUDA Run38	28.2	0.6	35	0.487	-13.5	4.4	30	0.17	0.77	atelin
	TUDA Run39	28.2	0.5	36	1.652	-13.0	6.2	39	0.18	0.85	Sir
	TUDA Run40	27.2	0.6	35	1.187	-15.4	5.5	53	0.18	0.77	
	TUDA Run51	28.3	0.7	32	1.059	-13.1	6.3	14	0.09	0.78	
	TUDA Run71	25.2	0.5	33	2.057	-16.6	7.9	21	0.12	0.92	
	TUDA Run72	26.5	0.6	30	0.964	-15.8	5.3	17	0.14	0.82	

Accretion Models

AIH, ONERA, TUDA

Snowflake Accretion Model

- Objective: assess the HAIC accretion models (sticking & erosion) for the snow particles Methodology
 - Based on some IWT experiments performed during ICE GENESIS => CSTB, RTA
 - Optimization-based approach on some (3) coefficients of the sticking/erosion models
 - Using 2D configurations
 - o Severity function based on the experimental and numerical ice shapes for each case
 - Optimization process (Trust Region Reflective algorithm)
 - Values of the coefficients defined on a case-by-case analysis or considering several test cases together

Snowflake Accretion Model

- Some comparisons
 - The optimization provides some improvements on the numerical results but is not fully satisfactory
 - Need for a better optimization ... and/or a better modelling

Specific coef.	6	cases	9 cases	
Arithmetic average	5	cases	9 cases	
cp. ice shape um. ice shape (optimal coefficients) $3^{\circ}C, v_{a} = 94 m.s^{-1}, TWC = 3.7 g.m^{-3}, LWR = 0.30$	57551 6	40 30 20 10 E 0 -10 -20 -30	Exp. ice shape Num. ice shape (optime $T_a=-3^\circ C, v_a=40\ m.s^{-1}, TW$	al coefficients) $VC=0.5 \ g.m^{-3}, \ LWR=0.30$
-50 0 50		-40	-40 -20 0	20 40
	Specific coef. Arithmetic average p. ice shape im. ice shape (optimal coefficients) $a^{\circ} C, v_{a} = 94 m.s^{-1}, TWC = 3.7 g.m^{-3}, LWR = 0.3$	Specific coef. 6 Arithmetic average 5 p . ice shape um. ice shape (optimal coefficients) p v^{o} C, v_{a} =94 m.s ⁻¹ , TWC = 3.7 g.m ⁻³ , LWR = 0.36 p	Specific coef.6 casesArithmetic average5 casesp. ice shape um. ice shape (optimal coefficients) 40 20 10 	Specific coef.6 cases9 casesArithmetic average5 cases9 cases $p.$ ice shape um. ice shape (optimal coefficients) 40 20 10 $E = 0$ -10

CSTB

Shattering Model

Objective : characterize the break-up threshold and the Particle Size Distribution after Break-up

Methodology

- Based on TUDA and AIT experimental data
 - Snowflake impacts onto a clean solid substrate
 - Snowflake impact at 11 m/s, 19 experiments (TUDA)
 - Natural snowflakes sucked through a constriction, 112 impacts (AIT)
- Break-up threshold
 - Considering previous results from HAIC model
 - Need to define a characteristic length scales
- No implementation in the 3D numerical tools at that point

Break-up sequences

ICE GENESIS M60 Final Public Workshop @ Toulouse - 6-7 December 2023

Shattering Model

Break-up threshold

Parameter of interest
$$\xi = \frac{U_n D_{\min}^{\frac{1}{3}}}{\beta}$$

 $\xi_{\text{crit},1} = 0.110 \left(\frac{D_{\min}}{D_{\max}}\right)^{0.559}$ for $0.008 < \frac{D_{\min}}{D_{\max}} < 0.5$,
 $\xi_{\text{crit},2} = 0.3315 \left(\frac{D_{\min}}{D_{\max}}\right)^{2.154}$ for $0.5 < \frac{D_{\min}}{D_{\max}} < 1$

- Particle Size Distribution after impact
 - Using a Kalman multi-object tracking algorithm (@Matlab)
 - Truncated Weibull density function

$$f(d) = \frac{\nu}{\lambda} * \left(\frac{\nu}{\lambda}\right)^{\nu-1} * \exp\left(-\left(\frac{d}{\lambda}\right)^{\nu}\right)$$
 if $d > 0.073$ mm

3D numerical assessment

AIT, ONERA, POLIMI

Preliminary Validation in 3D solvers

- Academic validations have been presented previously (drag & melting models) Z
- Considering 2D-extruded cases with the 3D solvers (RTA database) Z
 - Hölzer & Sommerfeld drag model / mNS melting model
 - Accretion based on ONERA IGLOO3D/MESSINGER3D solver
 - Same Heat Transfer Coefficient as in the 2D calculation
 - Predictor calculation with a monodisperse distribution
- To be tested more extensively in WP11

Ехр	<i>V</i> ∞ (m/s)	<i>T</i> ∞ (°C)	MMD (μm)	TWC (g/m³)	LWR	Density (kg/m³)	Duration (s)
TP08	40	-3	698.8	0.49	0.3	280	600
			Operat	ting condi			

Conclusion & Way Forward

AIH, AIT, ONERA, POLIMI, TUDA

Conclusion & Way Forward

- A set of basic experiments to understand snow physical phenomena and support modeling activities
- A first set of snow transport and snow accretion models derived from HAIC / MUSIC-HAIC showing commonality between ice crystals and snow icing physics
- Snow models implemented in 2D and 3D icing tools and preliminary validation

Achievements within ICE GENESIS provides already major improvement compared to the state of the art especially wrt transport model. Preliminary 2D/3D capability available and ready for further assessment on representative industrial configuration.

Still, improvements needed

- Snow accretion : improvement of sticking / erosion modeling
- Other phenomena: shedding, saltation

