

INTERNATIONAL CONFERENCE ON ICING

of Aircraft, Engines, and Structures

JUNE 17-21, 2019 | MINNEAPOLIS, MN

CALCULATION-EXPERIMENTAL RESEARCH ON METHODICAL ISSUES OF PROVODING TESTS OF AVIATION TECHNOLOGY ELEMENTS IN SLD CONDITIONS AT HIGH FLOW SPEEDS

Speaker Goriachev Aleksei
Central Institute of Aviation Motors (CIAM)

FLIGHT SPEED RANGES

- For helicopter airframe elements:
 - $60 \div 290 \text{ km/h} (16.7 \div 80.5 \text{ m/s})$
- For helicopter blades: 154 ÷ 160 m/s (for specific sections of blades)

For airframe elements:

438 ÷ 784 km/h (121.7 ÷ 217.8 m/s)

CIAM C-2 TEST CELL FOR MODELING ICING CONDITIONS

CALIBRATION TYPES

Aerodynamic calibration:

- maintenance of uniform potential flow core;
- determination of pressure pulsation level;
- determination of object impact on airflow.

Calibration of ice conditions:

- injectors calibration;
- maintenance of icing cloud uniformity of the flow core;
- determination of droplets supercooling extent;
- LWC and MVD calibration.

Obtaining large drops in the airflow

MVD DROPLET SIZE MEASUREMENT METHODS

1- water tank (40 liters), 2- pressure pump, 3- by-pass line with tap, 4- filter (20 μm), 5- measuring section with TDR-1 flowmeter and shut-off valve, 6- measuring section with TДP-3 flowmeter and shut-off valve, 7- calibrated injector, 8- compressed air bottle (40 liters), 9- reducer with valve, 10- metering valve, 11- metering diaphragm, 12- differential manometer, 13- measuring section («MALVERN INSTRUMENT» particle size analyzer, «MASTERSIZER-X» make), 14- transition section , 15- moisture separator of «Cyclon»-type, 16- suction line.

PHASE-DOPPLER PARTICLE ANALYZER

Rig's diagram with PDPA

Laser

- Mirror
- Forming Optics
- Transferring Lens
- Window in a wall of a Rig
- Fibre-optical reception block
 - Fibre-optical cable
- Doppler's signal processor
- Computer

ICING CALIBRATION

LWC cloud uniformity

Local relative ice thickness

20/03/08 (Trace_80)
Wind tunnel: C-1A, Number of active injectors = 48,
Type of injectors - diameter 0.7 mm, LWCice = 0.428 g/m3.

Ice accretion map

20/03/08 (Trace_80) Wind tunnel: C-1A, V = 70.0 m/s, T = -30 C, LWC = 0.73 g/m3, Time = 270 s,

D injector = 0.7 mm

V = 70 m/s

LWC = 0.73 g/m3

Evaluation of the icing cloud uniformity

V=80 m/s, OAT=-20°C, LWC=0,4 g/s, Dnozzle=0,7 mm

V=20 m/s, OAT=-15°C, LWC=0,6 g/s, Dnozzle=0,3 mm

> V=80 m/s, OAT=-20°C, LWC=0,6 g/s, Dnozzle=1,2 mm

Evaluation of the droplets supercooling degree

The goal is to confirm that droplets impinge on the object of study at a temperature close to the temperature of the main air flow in a supercooled state.

3-cylinder calibration test layout

The appearance of the C-2 test cell

ESTIMATION OF DROPLETS SUPERCOOLING EXTENT

V = 80.3 m/s $OAT = -1.3 \, ^{\circ}C$ MVD = 19 mkm

No॒	V, м/c	Z, км	OAT, ^O C	LWC,r/m ³	MVD, MKM	TIME, c	D _{ing} , MM
234	80,3	1,2	-1,3	0,9	19,3	30'40''	1,2
237	80,3	1,2	-1,2	0,84	37,2	36'10''	0,7
232	80	1,2	-4,7	0,52	38	12'	0,7
235	41,7	1,2	-4,5	0,84	23,15	13'	0,7

V = 80.3 m/s $OAT = -1.2 \, ^{\circ}C$ MVD = 37 mkm

THANK YOU FOR ATTENTION